Site Map

Erythropoietin test

Serum erythropoietin; EPO

The erythropoietin test measures the amount of a hormone called erythropoietin (EPO) in blood.

The hormone tells stem cells in the bone marrow to make more red blood cells. EPO is made by cells in the kidney. These cells release more EPO when blood oxygen level is low.

I Would Like to Learn About:

How the Test is Performed

A blood sample is needed.

How to Prepare for the Test

No special preparation is necessary.

How the Test will Feel

When the needle is inserted to draw blood, some people feel moderate pain. Others feel only a prick or stinging sensation. Afterward, there may be some throbbing.

Why the Test is Performed

This test may be used to help determine the cause of anemia, polycythemia (high red blood cell count) or other bone marrow disorders.

A change in red blood cells will affect the release of EPO. For example, people with anemia have too few red blood cells, so more EPO is produced.

Normal Results

The normal range is 2.6 to 18.5 milliunits per milliliter (mU/mL).

The examples above are common measurements for results of these tests. Normal value ranges may vary slightly among different laboratories. Some labs use different measurements or test different samples. Talk to your health care provider about the meaning of your specific test result.

What Abnormal Results Mean

Increased EPO level may be due to secondary polycythemia. This is an overproduction of red blood cells that occurs in response to an event such as low blood oxygen level. The condition may occur at high altitudes or, rarely, because of a tumor that releases EPO.

Lower-than-normal EPO level may be seen in chronic kidney failure, anemia of chronic disease, or polycythemia vera.

Risks

Risks associated with having blood drawn are slight, but may include:

Related Information

Reticulocyte count
Protein in diet
Chronic kidney disease
Polycythemia vera

References

Kaushansky K. Hematopoiesis and hematopoietic growth factors. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine. 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 156.

Kremyanskaya M, Najfeld V, Mascarenhas J, Hoffman R. The polycythemias. In: Hoffman R, Benz EJ Jr, Silberstein LE, Heslop HE, Weitz JI, Anastasi J, eds. Hematology: Basic Principles and Practice. 6th ed. Philadelphia, PA: Elsevier Saunders; 2013:chap 67.

Kumar V, Abbas AK, Aster JC. Red blood cell and bleeding disorders. In: Kumar P, Clark M, eds. Kumar and Clarke's Clinical Medicine. 9th ed. Philadelphia, PA: Elsevier; 2017:chap 14.

BACK TO TOP

Review Date: 8/26/2017  

Reviewed By: Linda J. Vorvick, MD, Clinical Associate Professor, Department of Family Medicine, UW Medicine, School of Medicine, University of Washington, Seattle, WA. Also reviewed by David Zieve, MD, MHA, Medical Director, Brenda Conaway, Editorial Director, and the A.D.A.M. Editorial team.

ADAM Quality Logo

A.D.A.M., Inc. is accredited by URAC, for Health Content Provider (www.urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is among the first to achieve this important distinction for online health information and services. Learn more about A.D.A.M.'s editorial policy, editorial process and privacy policy. A.D.A.M. is also a founding member of Hi-Ethics. This site complies with the HONcode standard for trustworthy health information: verify here.

The information provided herein should not be used during any medical emergency or for the diagnosis or treatment of any medical condition. A licensed medical professional should be consulted for diagnosis and treatment of any and all medical conditions. Links to other sites are provided for information only -- they do not constitute endorsements of those other sites. © 1997- 2019 A.D.A.M., a business unit of Ebix, Inc. Any duplication or distribution of the information contained herein is strictly prohibited.

A.D.A.M. content is best viewed in IE9 or above, Firefox and Google Chrome browser.